WHAT IS RED LIGHT THERAPY AND NEAR-INFRARED LIGHT
THERAPY/ PHOTOBIOMODULATION
Red and near-infrared light are part of the electromagnetic spectrum, and more specifically, part of the spectrum of light emitted by the sun (and also fire light). These wavelengths of light are “bioactive” in humans. That means that these types of light literally affect the function of our cells.
It is the red and near-infrared wavelengths specifically that have these amazing effects on our bodies. (Interestingly, even within that range, not all the red and near-infrared wavelengths seem to be created equal.
Specifically, most research showing benefits of red light and near-infrared light have used wavelengths in the narrow ranges of 630-680nm and 800-880nm.)
While most other wavelengths of light (such as UV, blue, green, and yellow light, etc.) are mostly unable to penetrate into the body and stay in the layers of the skin, near-infrared light and red light are able to reach deep into the human body (several centimeters, and close to 2 inches, in some cases) and are able to directly penetrate into the cells, tissues, blood, nerves, the brain, and into the bones.
Most of us already know that certain wavelengths can be harmful at high exposures (like ultraviolet rays from the sun, or gamma rays from radioactive decay). But, it turns out that some wavelengths can also be extremely beneficial for our health! In particular, the wavelengths in the mid-600s nm and low-800s nm (encompassing red light and some infrared) have extreme therapeutic value, due to its ability to easily pass through human tissue (getting absorbed to a depth of about 8 to 10 mm). When applied at low levels to our bodies, light from the red and near-infrared spectrum is known as red light therapy. (Unlike light therapies designed to intentionally damage tissue [such as using lasers for ablation, thermal coagulation, or cutting], red light therapy involves power densities too low to actually heat and damage the tissue.)
Red Light Therapy can greatly benefit people with autoimmune disease.
In the scientific literature, red light therapy is usually called photobiomodulation or sometimes low-level laser therapy (LLLT). Even though these aren’t exactly household terms, this type of therapy has actually been around since the 1960s, when a Hungarian researcher named Endre Mester discovered that shining low-level laser light on shaved mice caused their hair to grow back more quickly (and also stimulated wound healing)! By the 1970s, Mester was using low-level lasers on humans to help treat non-healing skin ulcers. In the decades since then, research on this therapy has grown to include various skin benefits (including wrinkle reduction!), weight loss, oral health improvement, arthritis reduction, better sleep quality, a lessening in autoimmune symptoms, and more!
HOW DOES RED LIGHT THERAPY WORK?
One of the most amazing effects of red light is its ability to increase adenosine triphosphate (ATP) production in the mitochondria, by activating an enzyme called cytochrome c oxidase (Cox) that plays a role in generating ATP synthase (the enzyme that produces ATP). ATP is the major energy currency of our cells, and when red light increases its levels in our tissue, we essentially have more of this currency to use for transporting energy needed for all of the metabolic activities of our cells!
As a consequence of this ATP boost, we can experience more rapid healing and muscle recovery (in fact, some research shows that red light therapy can enhance athletic performance by improving recovery and tissue repair!). Research has also demonstrated that red light therapy can help modulate reactive oxygen species (ROS) and induce transcription factors that play a role in protein synthesis, cytokine modulation, cell proliferation, growth factors, tissue oxygenation, and inflammatory mediators.
Importantly, immune cells are strongly affected by red light therapy (helping explain why this type of therapy has such major benefits for healing). Mast cells, in particular, degranulate in response to red-spectrum wavelengths (degranulation involves releasing certain molecules, often cytotoxic ones, from the cells’ secretory vesicles). As a result, the pro-inflammatory cytokine TNF-α gets released from cells and leukocytes (white blood cells) are better able to infiltrate the body’s tissues to promote healing. Red light therapy also helps activate lymphocytes and increases the motility of epithelial cells, helping wound sites to close up more quickly.
On top of that, red light therapy has been shown to enhance the production of basic fibroblast growth factor, as well as increase the proliferation, maturity, and motility of fibroblasts (a type of cell that produces collagen and extracellular matrix). Red Light can actually increase our collagen production, and deliver all the skin and joint benefits that come as a result.
Sadly, autoimmune diseases affect the lives of over 23 million Americans. Autoimmune diseases include illnesses throughout the body such as:
- skin (psoriasis)
- joints (rheumatoid arthritis)
- nervous system (multiple sclerosis)
- gut (ulcerative colitis and Crohn’s disease)
- endocrine system (type 1 diabetes and thyroid disease).
Photobiomodulation (light therapy) has been clinically proven to benefit all of the symptoms mentioned above.
Beyond the ability of red light therapy to improve immune function, there Is clinical trial evidence that red light therapy can improve specific autoimmune conditions. The science is particularly strong for hypothyroidism (most commonly caused by Hashimoto’s thyroiditis) and joint pain (especially caused by rheumatoid arthritis).
RED LIGHT CAP
On a super technical level, red light therapy causes a photochemical reactionwithin our cells. Chromophores (which are responsible for a molecule’s color) in our mitochondria absorb photons from red and infrared light, causing electrons in those chromophores to get excited and jump into a higher-energy orbit. As a result, our body can use this new stored energy for a variety of cellular tasks, which then have wide-ranging benefits for our health.